
 Programming in Crimson 3.X

Red Lion Controls 1

Programming in Crimson 3.X
Introduction & Syntax Primer

By Joe Wagner - Field Applications Engineer

The information contained herein is provided for informational purposes only. It is general information and may not reflect upon or address your situation. Red Lion
makes no representation about specific knowledge of the customer's system or the specific performance of the system. Red Lion is not responsible for any damage

to equipment or connected systems and disclaims any liability for actions you take or fail to take based on the information provided.

Contents
Section 1: Introduction and Basics .. 2

Programming Environment ... 2

Adding Comments ... 3

Using Data Tags ... 3

Using Local Variables .. 3

Translating Programs .. 4

Calling Programs ... 4

Returning Values ... 6

Passing Arguments .. 8

Section 2: Syntax Cheat-Sheet .. 9

Operators .. 9

If/Else Statements ... 10

Switch Statements .. 11

Loops ... 12

Using System Functions .. 13

 Programming in Crimson 3.X

Red Lion Controls 2

Section 1: Introduction and Basics

Programming Environment

1. Click once on the Programs section in the lower half of the Navigation Pane to get started.

2. In the upper half of the Navigation Pane you will see a Programs tree with an automatically

generated program named “Program1” within it. Right clicking on Program1 allows you to rename
the program, create additional programs, create folders for organizing programs, and more.

3. In the Editing Pane (middle), you will see a Source tab and a Properties tab at the top, with Source

selected by default.

• Within the Source tab you will see sections for Data Types and Program Code. Data Types is
only used when using the return function (covered later) and can otherwise be left as it is.
Program Code contains the white text-editing area where we will be entering our program
code and spending the most time.

• Within the Properties tab you will see a section for Environment with options for execution
of the program and reading external data, and a section for Debugging with options for trace
output. See manual for more info on this tab if needed, otherwise it can be left alone.

4. The Resource Pane contains a variety of items that can be dragged into your code. The Data Tags and

Programs categories are self-explanatory and provide quick access to those aspects of your database.
The System category provides access to Crimson’s extensive library of system variables and functions.

 Programming in Crimson 3.X

Red Lion Controls 3

Adding Comments

You can add comments to your code by using // for single-line comments or /* comment here */ for multi-line

comments. See below for example:

Using Data Tags

You can use Data Tags in your programs either by typing out the name of the Data Tag, or by simply dragging the

Data Tag from the Resource Pane and dropping it into the Program Code portion of the Editing Pane.

Using Local Variables

You also have the ability to declare local variables which will not appear in Data Tags and cannot be referenced

anywhere other than the program which they are declared in. These variables can optionally be initialized by using

the = operator followed by a value. See examples below:

//This is an example of declaring local variables.

int x,y,z; // declare local integers x, y, and z

int q; // declare local integer q

float b = 44.7; // declare local float b initialized to 44.7

cstring c = “test”; // declare local string c initialized to “test”

// This is a single-line comment

/* This is line 1 of a multi-line comment

 This is line 2 of a multi-line comment

 This is line 3 of a multi-line comment

*/

 Programming in Crimson 3.X

Red Lion Controls 4

Translating Programs

When you have finished writing the syntax of your program, you will need to Translate it. This will check the program

for errors and allow the program to run when called. If the diamond icon next to the program name is green, this

indicates that the program has been translated and validated. Yellow indicates that a program has been edited but

not yet translated. Red indicates that a program contains one or more errors.

1. The diamond next to Program1 is yellow, indicating that it has been edited but not yet translated.
2. Pressing this Translate button or pressing CTRL+T will check the program code for errors. If no errors are

present, the diamond next to Program1 will turn green and the program will be ready to be called.

Calling Programs

All programs will need to be invoked to run. This works slightly differently for programs that return values and those

that do not. Below are some common methods for calling standard programs that do not use the return function:

Calling Programs with a GetNow() trigger

This is an example of creating a GetNow() trigger tag to call multiple programs every second.

1. Click on the Data Tags section
2. Create a new Data Tag (in this example, it is named ‘ProgramCall’)
3. Set the Source of this tag to General, and enter GetNow() in the blank field as shown above

4. Click on the Triggers tab of this tag (continued on next page)

 Programming in Crimson 3.X

Red Lion Controls 5

1. From the Triggers tab, set the Trigger Mode to Change in Value and set the Value to 1.
2. With the Action set to General, click Edit…
3. Drag the programs you would like to call from the Programs section of the Resource Pane into

the Editor, separated by commas.
4. Click OK

Calling Programs using Display Pages -> Global Actions

This is an example of using Display Pages settings to call multiple programs every ‘tick’, which is
every second.

1. Click on the Display Pages section
2. Click on Pages (top level of Navigation Pane)
3. Within the Global tab, find On Tick and click Edit…
4. Drag the programs you would like to call from the Programs section of the Resource Pane into

the Editor, separated by commas.
5. Click OK

 Programming in Crimson 3.X

Red Lion Controls 6

Calling Programs from other Programs

It is also possible to call programs within the syntax of other programs, as shown below. In this
case, Program1 is calling Program2 and Program3. Note that Program1 would still need to be
called somewhere else in order for this to function.

Returning Values

As mentioned above, programs can alternatively be configured to return a single value. These programs are typically

invoked via tag configuration by setting the tag’s Value property to Program(), where Program is the name of the

program in question. For example, if you want to analyze a number of conditions relating to a motor and return a

value to indicate the current state, you could create a program that returns an integer like this:

//This is an example a program that returns a motor status value

//The data type for this program must be set to INT

if(MotorRunning)

{

 return 1;

}

else if (MotorTooHot)

{

 return 2;

}

else if (MotorTooCold)

{

 return 3;

}

else

{

 return 0;

}

 Programming in Crimson 3.X

Red Lion Controls 7

Keep in mind that in order to use the return function in a program, the program must have a Data Type that is

compatible with the value being returned. See below for instructions:

1. With your program selected, in the Data Types section of the Editing Pane, click Edit…
2. In the Return Type section, use the drop-down menu to select a compatible Data Type
3. Use the return function to return values
4. See below where a motor status tag has been configured to be equal to the return value of this

Motor1 program

 Programming in Crimson 3.X

Red Lion Controls 8

Passing Arguments

Programs are also capable of accepting arguments. Suppose you want to write a program called Averaging to
return the average of two floating-point values. The program could be configured to accept two floating-point
arguments, Value1 and Value2. See below for instructions:

1. With your program selected, in the Data Types section of the Editing Pane, click Edit…
2. In the Return Type section, use the drop-down menu to select the Floating-Point Data Type

In the Parameters section, set the Type of parameters 1 and 2 to Floating-Point. Name them Value1
and Value2

3. Now we are able to reference the Value1 and Value2 arguments in the program
4. See below where we invoke our Averaging program with Tag1 and Tag2 as dynamic arguments.

Value1 will be equal to Tag1, and Value2 will be equal to Tag2.

 Programming in Crimson 3.X

Red Lion Controls 9

Section 2: Syntax Cheat-Sheet

Operators

Logical Operators

Operator Description

&& Called Logical AND operator. If both the operands are non-zero, then the
condition becomes true.

|| Called Logical OR Operator. If any of the two operands is non-zero, then the
condition becomes true

! Called Logical NOT Operator. It is used to reverse the logical state of its
operand. If a condition is true, then Logical NOT operator will make it false.

Relational Operators

Operator Description

== Checks if the values of two operands are equal or not. If yes, then the
condition becomes true.

!= Checks if the values of two operands are equal or not. If the values are not
equal, then the condition becomes true.

> Checks if the value of left operand is greater than the value of right operand.
If yes, then the condition becomes true.

< Checks if the value of left operand is less than the value of right operand. If
yes, then the condition becomes true.

>= Checks if the value of left operand is greater than or equal to the value of
right operand. If yes, then the condition becomes true.

<= Checks if the value of left operand is less than or equal to the value of right
operand. If yes, then the condition becomes true.

Arithmetic Operators

Operator Description

+ Adds two operands.

- Subtracts second operand from the first.

* Multiplies both operands.

/ Divides numerator by de-numerator.

% Modulus Operator and remainder of after an integer division.

++ Increment operator increases the integer value by one.

-- Decrement operator decreases the integer value by one.

Assignment Operators

Operator Description

= Simple assignment operator. Assigns values from right side operands to left
side operand.

+= Add AND assignment operator. It adds the right operand to the left operand
and assign the result to the left operand.

-= Subtract AND assignment operator. It subtracts the right operand from the
left operand and assigns the result to the left operand.

*= Multiply AND assignment operator. It multiplies the right operand with the
left operand and assigns the result to the left operand.

/= Divide AND assignment operator. It divides the left operand with the right
operand and assigns the result to the left operand.

%= Modulus AND assignment operator. It takes modulus using two operands and
assigns the result to the left operand.

 Programming in Crimson 3.X

Red Lion Controls 10

If/Else Statements

• if statements are used to check for specific true/false conditions and execute code if true.

• else if can be optionally added beneath an if statement to check for another specific condition.
The else if statement will only be checked if the original if statement is false.

• else can also be optionally added beneath an if statement, or beneath an else if statement if
one exists. The else statement will only be checked if the original if and else if statements are
false.

• See page 9 for descriptions of the operators used in the below examples.

If/Else Syntax Example 1:

If/Else Syntax Example 2:

//This is a simple If Else statement

//The condition (true/false) lives in the parentheses

//Inside the brackets {} is the action that happens on a true

condition

if(InputTag1 > InputTag2)

{

 OutputTag1 = InputTag2 + 10;

}

else

{

 OutputTag1 = 0;

}

//This is a complex If Else statement

//The conditions (true/false) live in the parentheses

//Inside the brackets {} is the action that happens on a true

condition

if((InputTag1 <= 100) && (InputTag2 != 100))

{

 OutputTag1 = 0;

 OutputTag2 = 100;

}

else if((InputTag1 > 100) && (InputTag2 == 100))

{

 OutputTag1 = 50;

 OutputTag2 = 200;

}

else if((InputTag1 >= 300) || (InputTag2 >= 300))

{

 OutputTag1 = 75;

 OutputTag2 = 300;

}

else

{

 OutputTag1 = 500;

 OutputTag2 = 500;

}

 Programming in Crimson 3.X

Red Lion Controls 11

If/Else Syntax Example 3:

Switch Statements

A switch statement is used to compare an integer value against a number of possible constants, and to perform an

action based upon which value is matched. Looking at the example below, if State1 value is equal to 3, TagA will

be 1 and TagB will be 1. The default state will be active if State1 is not equal to 1, 2, or 3. Note that the break

statement is used at the end of each case statement. Also note that the argument (State1 in this case) must be an

integer data type in order for the switch statement to work.

//This is a simple Switch statement

//The state in () is checked and compared to the cases

//When a match is found the code in the appropriate case is executed

switch(State1)

{

 case 1:

 TagA = 1;

 TagB = 0;

 break;

 case 2:

 TagA = 0;

 TagB = 1;

 break;

 case 3:

 TagA = 1;

 TagB = 1;

 break;

 default:

 TagA = 0;

 TagB = 0;

 break;

}

//This is an If Else statement utilizing flag tags

//The conditions (true/false) live in the parentheses

//Inside the brackets {} is the action that happens on a true

condition

//Note that “Flag1 == false and “!Flag1” would have the same effect

//Note that “Flag2 == true” and “Flag2” would have the same effect

if (Flag1 && !Flag2)

 {

 OutputTag1 = 1000;

 }

else if ((Flag1 == false) && (Flag2 == true))

 {

 OutputTag1 = 5000;

 }

else

 {

 OutputTag1 = 99;

 Flag3 = true;

 }

 Programming in Crimson 3.X

Red Lion Controls 12

Loops

There are 3 different types of loops which can execute a section of code while a certain condition is true. The while

loop tests the condition before the code is executed. The do loop tests the condition afterwards. The for loop is

essentially a compact way of defining a while loop. The break statement can be used to terminate the loop early,

while the continue statement can be used to skip the balance of the loop body. Note that all 3 of the code examples

that follow will have the exact same output.

While Loops

This type of loop repeats the action that follows it while the condition in the while statement
remains true.

For Loops

This type of loop contains three elements separated by semicolons and an action:

• Initialization- This step allows you to declare and initialize any loop control variables.

• Condition- This is the statement is evaluated at the start of each loop iteration. If it is true, the
body of the loop is executed.

• Induction- This step is used to make a change to the control variable to move the loop on to its
next iteration.

• Between the curly brackets, there is an action which the loop will execute for each iteration.

Do Loops

This type of loop is very similar to the while loop, except that the condition is not tested until the
end of the loop. Because of this, the loop will always execute at least once.

//This is a while loop which writes to 100 array elements

//Tag1 will increment to 100 and the Array elements will populate with

the Tag1 value. For example, Array[42] will have a value of 42.

while(Tag1 < 100)

{

Array[Tag1] = Tag1;

Tag1++;

}

//This is a for loop which writes to 100 array elements

//Tag1 will increment to 100 and the Array elements will populate with

the Tag1 value. For example, Array[42] will have a value of 42.

for(Tag1=0; Tag1<100; Tag1++)

{

Array[Tag1] = Tag1;

}

//This is a do loop which writes to 100 array elements

//Tag1 will increment to 100 and the Array elements will populate with

the Tag1 value. For example, Array[42] will have a value of 42.

do

{

Array[Tag1] = Tag1;

Tag1++;

}

while(Tag1 < 100);

 Programming in Crimson 3.X

Red Lion Controls 13

Using System Functions

There are over 250 System Functions built into Crimson which can be used within your program code. To use these

functions, go to the System section of the Resource Pane, and it expand the Functions folder. From here, you can

expand any of the sub-folders and drag functions directly into your program code. Functions generally require some

configuration in the form of arguments. If you’re not sure how to use a function or how to structure the arguments,

right click on the function and click once on ‘Get Help’ which will open up a manual explaining the function along

with an example.

System Function Examples

• GotoPage(name) – Selects page name to be shown on the Crimson device’s display. Used for navigation.

Argument Type Description
name Display Page The page to be displayed.

Example:
GotoPage(Page1);

• HasAccess(rights) – Returns a value of true or false depending on whether the current user has access
rights defined by the rights parameter.

Argument Type Description
rights int The required access rights.

Example:
If (HasAccess(1))

{

Data1 = 0;

}

 Programming in Crimson 3.X

Red Lion Controls 14

• IsDeviceOnline(device) – Reports if device is online or not.

Argument Type Description
device int The index of the device to be checked

Example:

 Device1_Comms = IsDeviceOnline(1);

• IsLoggingActive() – Returns true or false, indicating whether data logging is active in the current database.

Argument Type Description
none

Example:

 Device1_Log = IsLoggingActive();

• Scale(data, r1, r2, e1, e2) – This function linearly scales the data argument, assuming it to contain values

between r1 and r2, and producing a return value between e1 and e2.

Argument Type Description

data int The value to be scaled

r1 int The min raw value stored in data

r2 int The max raw value stored in data

e1 int The engineering value corresponding to r1

e2 int The engineering value corresponding to r2

Example:

 ScaledData = Scale(MyValue, 0, 4095, 0, 100);

• SendFile(rcpt, file) – Sends an email from the Crimson device with the file specified attached. The
message will be sent using the appropriate mail transport as configured in the database.

Argument Type Description
rcpt int The recipient’s index in the database’s address book

file cstring The path and file name to be sent

Example:

 SendFile(0, “/LOGS/LOG1/260706.csv”);

• Flash(freq) – Returns an alternating true or false value that completes a cycle freq times per second.

This function is useful when animating display primitives or changing their colors.

Argument Type Description
freq int The number of times per second to flash

Example:

 BlinkingBit = Flash(2);

 Programming in Crimson 3.X

Red Lion Controls 15

• GetUpDownData(data, limit) – This function takes a steadily increasing value and converts it to a value
that oscillates between 0 and limit–1. It is typically used within a demonstration database to generate

realistic looking animation, often by passing DispCount as the data parameter so that the resulting

value changes on each display update.

Argument Type Description
data int A steadily increasing value source

limit int The number of values to generate

Example:

 Data = GetUpDownData(DispCount, 100);

• PrintScreenToFile(path, name, res) – Saves a bitmap copy of the current display to the indicated file.
Passing an empty string for name will allow Crimson to select a unique filename for the new image. The
res argument can be set to one to create an 8 bits-per-pixel bitmap, while a value of zero will create a 16
bits-per-pixel bitmap.

Argument Type Description
path cstring The directory in which the file should be created

name cstring The filename to be used

res int The required color resolution of the image

Example:

 PrintScreenToFile(“/”, “Screen_Capture”, 0);

